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We consider the propagation of sound in a two-dimensional shear layer in a 
duct. Initially plane sound waves propagate in a subsonic flow whose steady 
velocity U(y) is in the axial direction and is a function of the normal co-ordinate 
alone. The initial-value problem in time and space is solved within the framework 
of a perturbation scheme. Far from the wave front and for large time the re- 
fractive effects are considerable. However, the present results indicate that 
standing wave type patterns lead to a strong dependence on axial location in 
the duct. The paper also points out the weakness inherent in theories which 
attempt to treat the refraction problem without considering the source conditions. 

1. Introduction 
When sound waves propagate in a moving medium the main effects, in the 

absence of viscosity and thermal conduction, are convection and refraction, 
Convection is due simply to  the tendency of the moving medium to carry the 
acoustic energy with it at its local velocity. In  a uniformly moving medium of 
uniform density this is the only effect. However, if the velocity is not uniform, 
for example, in a shear layer, local convection velocities will be functions of 
position. This will cause pressure imbalances in directions normal to the flow 
direction resulting, further, in velocities normal to the flow. This refraction 
effect is due entirely to the velocity stratification in the medium. 

The study of acoustic refraction is complicated for two reasons. The acoustic 
wavelengths normally encountered are usually too large to permit geometrical 
ray tracing methods. Secondly, the intimate connexion between convection and 
refraction prevents a simple separation of the two effects. In comparison, the 
study of optical refraction is conceptually much simpler. 

Consider initially plane sound waves, generated at  the station x = 0, propa- 
gating in the positive x direction in a flowing medium. The steady subsonic 
velocity U(y) is axial and is a function of the normal co-ordinate alone. The flow 
is in a duct with rigid confining plates at  g = 0 and y = b (see figure 1). The 
question we ask is: what is the acoustic pressure distribution in the duct? 

Pridmore-Brown (1958) and more recently Mungur & Gladwell (1969) have 
attempted to study this problem without specifying the initial pressure distribu- 
tion. They assume separable solutions of the form P(y) exp ~ { K Z  - ct} where 
k = w/c is the wave-number in a stationary medium. Substitution into the 
governing equations and consideration of the boundary conditions at the walls 
leads to an eigenvalue problem for the unknown K .  The resulting solutions predict 
large refraction effects. 
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The above-mentioned analyses have a disconcerting feature. Since they do 
not consider the complete boundary-value problem it is not clear how their 
results can be applied to a given initial pressure distribution, say a plane dis- 
tribution. Their eigenvalue problem is not of the Sturm-Liouville type and is, 
in fact, a non-linear eigenvalue problem. Unless the orthogonality and com- 
pleteness of the eigenfunctions can be proved, and this appears difficult, it will 
not be possible to use these solutions for a given initial pressure distribution. 
Intimately related to the question of completeness is that of separability in the 
space variables. If the solution to the general boundary-value problem is in 
fact non-separable in the space variables, the separable solutions to the governing 
equations will be of little use in the refraction problem. 

X 

FIGURE 1. Steady velocity profile in a duct of width b. 

It is the purpose of this paper to formulate a definite initial-value problem and 
t o  obtain a solution without any a prior; assumptions regarding the form of the 
solution. This will be done within the framework of a perturbation scheme about 
a uniform flow. Under such an approximation the variables do indeed separate. 
Moreover, the solution exhibits features that are not apparent from the work of 
Pridmore-Brown and Mungur & Gladwell. 

2. The initial-value problem 
2.1. Formulation 

Neglecting viscosity the linearized equations for mass and momentum conserva- 
tion take the form: au av 

at 

where pm is the constant ambient density and u, v, p and p are all first-order 
acoustic quantities with their usual meanings. Neglecting thermal conductivity, 
the energy equation and the equation of state take the form 
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Equations (2a) and ( 2 b )  indicate that the pressure and density are related 
isentropically along particle paths and thus (1 a) can be rewritten 

where c = (yRT,)* is the ambient sound speed. 
Our main interest is in knowing the acoustic pressure distribution in the duct, 

given a harmonic plane wave sound source at  x = 0. One could therefore assume 
a harmonic time dependence and attempt to solve the boundary-value problem 
in the space variables. Here, however, in order to avoid speculation about the 
application of a causality condition to the time-independent problem, we shall 
solve the initial-value problem in time and then look at the large time limit. The 
fluid is therefore assumed to be quiescent initially; the pressure at x = 0, the 
generating station, is taken to represent a harmonic, plane wave sound source 
whose amplitude is independent of y, 

Here H(t )  is the Heaviside step function 

The boundary conditions at  the rigid walls are that the normal velocities must 
vanish there, 

(6) V ( X ,  0, t )  = V ( X ,  b, t )  = 0. 

The governing equations (3), (1 b )  and (1  c) subject to the initial and boundary 
conditions (4a), ( 4 b )  and (6) yield the acoustic field for t > 0. We shall restrict 
our attention to the right half plane. 

It is to be noted that a single equation can be written down for the pressure 

2.2. A perturbation scheme 

The governing equation (7)  for the acoustic pressure is a third-order non- 
constant-coefficient partial differential equation. As was pointed out earlier the 
straightforward separation of variables approach does not appear to be useful 
in solving the initial- and boundary-value problem. As an alternative we shall 
develop a perturbation scheme about uniform flow. While such a procedure has 
obvious limitations, the advantage is that a solution will be obtained for a given 
source pressure distribution. 

Let the steady axial velocity U(y) be given as 
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where Uo is a constant and e is a small parameter. It is natural then to seek a, 
solution in the form 

p ( x ,  y, t )  = p(0) + ep(1) + . . . , 
u(x ,  y, t )  = u(0) + eu(1) + . . . , 
V ( X ,  y, t )  = V(0) + SV(1) + . . . . 

( 9 4  

(97)) 

(9c) 

The zeroth-order pressure p(O) then has to satisfy the convected wave equation 

where M(y) = M, + eM(l)(y) is the Mach number of the steady flow. The solution 
satisfying (10 )  and the initial and boundary conditions ( 4 ) ,  ( 6 )  is simply given by 

Thus the zeroth-order solution is just a plane sound wave convected in the 
positive :2: direction. The first-order equation for the acoustic pressure then takes 
the form 

Clearly the refraction effect, due to the Mach number stratification, is contained 
here. The initial and boundary conditions to be satisfied by the pressure perturba- 
tion are: 

p(l)(x,y, t)  = 0 (t  < O), (13a) 

p(l)(O, y ,  t )  = 0 ( t  O), (13f5) 

2.3. The transient solution 

Define the finite cosine transform and its inverse. 

y, t )  cos (nnylb) dy, 

m 

p(l)(x, y, t )  = ( l / b )  p(I)(x, 0 ,  t )  + ( 2 / b )  C @l)(x, n, t )  cos (nnylb) .  (14b)  
n=l 

Since ap(l)/ay = 0 at  y = 0, b,  then 

Applying the cosine transform to the first-order equation ( 1 2 )  one obtains 
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where a, is the Fourier coefficient of the Mach number perturbation, 
h 

0 
a, = s N ( l ) ( y )  cos (nnylb) dy. 

85 

Since we are considering the initial-value problem in time it is convenient to 
introduce the Laplace transform and its inverse defined by 

Applying the transform to (15) an ordinary differential equation is obtained 
h 

for $l). 

d2$1) 2~ C ~ ; ( U  0-2 n2n2 
( 1 . + @ ) - - L - - - -  dx2 dx (c2+2)6(1) 

The solution for n = 0 and n =+ 0 have to be considered in turn. 
n = 0. The straightforward solution of ( 1 8 )  subject to the conditions at  IL' = 0 

yields 

which appears to grow with x. Now, one can go through the formal procedure for 
treating this singular perturbation. However, in this case, this is unnecessary 
as the non-uniformity can be corrected by inspection. The n = 0 'mode' corre- 
sponds to simple convection as this is just the effect of an additional uniform 
velocity c(a,c/b) to the uniform flow cMo. Thus it would appear that one need 
only correct the zeroth-order solution by this additional uniform velocity in 
order to account for this perturbation. That this is so is confirmed by expanding 
the Laplace transform of the zeroth-order solution with this term added to the 
uniform Mach number. 

0-X +...I) 
+. . . I .  (20)  

P 0-X 

a + i w  ( - c(1 + Mo + (ea,/b)) { - c ( l +  MQ) [' - b ( l  +Mo) 
0-X 

The second term is identical to (19).  Thus one can treat the problem as of 
convection by the mean uniform Mach number (No + e(a,/b)) and refraction by 
the shear profile about this mean. 

n =+ 0. For 72 $. 0 the bounded solution to ( 1 8 )  vanishing at  x = 0 is 
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Thus to order e the Laplace transform in time of the pressure is given by 

Using the shift and product theorems (Carslaw & Jaeger 1963) the inversion 
of (22) is readily accomplished, formally giving, to order e, 

a = M , x / C ( l - N ; ) ,  (24b) 

p = x/c(  1 -&Ti), (24 c )  

a2 = (n2n2/b2) c2( 1 -Mi) .  (244 

and J1 is the first-order Bessel function of the first kind and 8(t) and 8’(t) are the 
delta function and its derivative. 

2.4. Large time solution 

Our main interest lies in the pressure distribution in the duct, far from the wave 
front, once the transient conditions have disappeared. The large time solution 
can be obtained from the transient solution (23)  or directly from the transform 
(22). Following the latter course it is clear that the large time behaviour is 
determined by the only pole, v = - iw. Using the theorem for large time (Carslaw 
& Jaeger 1963), we can write down the solution for large time, behind the wave 
front. 

It is easily verified that this solution satisfies the governing equations and the 
boundary conditions to order e. 
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If the generating pressure distribution is taken to be po  sin wt the mean-square 
pressure to order E is given by 

n*-1 m m e=  & + e  X B,Gos~,+E C C,cos~fe  X D,, 
PE n = l  n=n* n = l  

where n* is the smallest integer such that n* > ( l /n[ l -  M$) (oblc) and 

4 
B, = 

nw c2 
p n =  

Cn = Bnexp - 

c(1-ME) 

ux n2n2 8 
{ c(1-ME) I-- b2 w2 

K = wx/c( 1 - HE), 
D, = -Bn. 

3. Discussion 
The expression (25) is the solution that we were seeking. For harmonic plane 

wave generation at  x = 0, the pressure distribution in the duct is given by (25).  
The effect of the velocity perturbation ~U(l ) (y)  is two fold. First of all the con- 
vection speed is changed to the mean value of the total velocity Uo+eU(l)(y). 
The refraction or channelling then takes place as due to the shear about this 
mean velocity. 

The solution has a number of interesting features. It is composed of the super- 
position of' wave modes, in each of which the variables do, indeed, separate. The 
same result could have been obtained by rejecting the backward propagating 
waves in the spatial problem obtained by assuming an exp ( -  iwt)  time de- 
pendence. That the latter course is valid, is not obvious in a non-homogeneous 
problem. The solution also exhibits a cut-off phenomenon. For a given exciting 
frequency w ,  the modes for which n < (l /n[l  - ME]*) (bwlc), travel unattenuated. 
For n greater than this critical value the modes are rapidly attenuated with 
distance. The whole phenomenon is clearly strongly dependent on the ratio of 
the wavelength to the duct width. 

In order to show more clearly the effects of the various parameters, the results 
of some typical calculations are presented in figures 2-6. The generating pressure 
is taken to be po  sin wt and the unperturbed Mach number Mo is taken to be zero. 
Thirty terms of the series were calculated; however, 10 terms would have given 
sufficient accuracy to make the curves indistinguishable, on the scale presented. 
Figures 2 ( a )  and (b) show the effect of the velocity profile. The linear profile 
with the Mach number increasing upwards tends to channel the sound down- 
wards, as expected. With the symmetric quadratic profile, the sound is channelled 
symmetrically about the middle of the duct. It is to be noted that the pressure 
build up at  (x /b)  = 10 is much greater than at  the subsequent stations shown. 

The effects of increasing frequency and Mach number for a given profile, the 
4 power profile, are shown in figures 3 and 4. In  figure 3, the flow is counter to 
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FIGURE 2. (a)Acousticrefraction by alinearprofile. Mo = O,M'l'(y) = y/b,s  = 0.05, (wb/c) = 7: 
0,  x/b = 10; 0, x / b  = 40; v, xlb = 70. ( b )  Acoustic refraction by a quadratic profile. 
M 0 -  - 0, M'l ' (y)  = ( y / b ) { l - ( y / b ) } ,  6 = 0.3, (wblc) = 10: 0 ,  x/b = 10; 0, x!b = 40; v, 
x /b  = 70; 0, xlb = 100. 

10 log,, ( 2 j p t )  - 10 log,, 0.5 

FIGURE 3. The effect of increasing frequency. Mo = 0, 
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the direction of sound propagation and so the channelling is towards the centre 
of the duct. The refractive effect is accentuated, as expected, by increasing 
frequency and Mach number. However, the effect of increasing frequency de- 
creases after a certain stage as the amplitudes of the higher travelling wave modes 
are attenuated by the (a,/n2) factor. 

The details of the complicated near field are presented in figure 5.  All the loca- 
tions shown are within a duct width of the source. The pressure build up is not 
uniform in either x or y .  
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FIGURE 4. The effect of increasing Mach number for a given profile. The profile is the same 
as in figure 3. wb/c = 15, xfb = 8: 0, E = 0-05; IJ, 6 = 0.1; V, E = 0.3. 
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FIGURE 5. Details of the near field. Same profile as in figure 3. E = 0.3, ob/c = 20: 
0 ,  z/b = 0.25; D, xlb = 0.5; V ,  x/b = 0.75; 0, x/b = 1.0. 

Inspection of the result (26) for the mean-square pressure indicates the strong 
dependence on the axial location. It is clear that the different wave modes can 
combine to yield standing wave type patterns. This effect is clearly illustrated 
in figure 6, where, for the given parameters, the refraction effect at  xlb = 100 
is considerably less than at xlb = 40 and x/b = 70. While one does have to  be 
cautious, as the problem treated is that of hard wall ducts, the result would 
seem to indicate, qualitatively, that acoustic liners may not be equally effective 
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at all axial locations. However, one would have to consider the liner problem 
separately in order to arrive at  any quantitative estimates. 

It would be in order to compare the results of the present approach with those 
of Pridmore-Brown and Mungur & Gladwell. Unfortunately, this is not possible 
for the reason mentioned earlier: until and unless the orthogonality and com- 
pleteness of Pridmore-Brown’s eigenfunctions can be proved, there appears no 
way of combining them to give a uniform initial pressure distribution. 

Finally, we consider the likely range of validity of the present results. One 
cannot, a priori, define a precise range of validity of the perturbation scheme. 
One can only calculate the refractive field and regard it with caution when it 
appears to be of the same magnitude as the plane wave field (i.e. the calculation 
fails when it becomes interesting !). Thus for long wavelengths, where the re- 
fractive effects are smaller, the perturbation scheme would be applicable for 
higher Mach numbers than it would be for shorter wavelengths. In summary, 

0.8 
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10 log,, (P/&) - 10 log,, 0.5 

FIGURE 6. The effect of standing wave type patterns. The pressure build up appears to 
be decreasing with distance from the source, over the rangc considered. The profile is the 
same as in figure 3. 6 = 0.05, wblc = 20: 0, x / b  = 40; 0, x]b = 70; 0, x / b  = 100. 

the Perturbation scheme should be regarded as a perturbation about plane wave 
propagation, rather than as perturbation about uniform flow. The validity of 
the results may be decided by the relative magnitudes of the plane wave field 
and the first-order refractive field. It is for this reason that the calculations 
presented in the figures were done by setting .&lo = 0 and allowing the pcrturbed 
velocity field t o  represent the whole velocity field. 

4. Concluding remarks 
An objective of this paper was to establish the importance of relating the 

propagation-refraction problem to the nature of the sound source. The chief 
results obtained here, the cut-off effect, the dependence of the mean pressure 
on the axial distance from the source, the standing wave type patterns, etc., were 
not indicated by the earlier approaches which did not consider the initial pressure 
distribution. 



On acoustic refraction by duct shear layers 91 

We still have to remain tentative about the question of separability in the 
space variables. Within the present perturbation approximation it was shown 
that the variables do indeed separate. However, it is obvious that the cosine 
transform would be inapplicable for the complete problem. It would be of interest 
in this connexion to investigate the properties of the eigenfunctions of Pridmore- 
Brown’s eigenvalue problem. In determining whether they form a complete and 
orthogonal set or not, the question of separability will also be decided. 

In  conclusion it should be pointed out that the present solution has the natural 
limitations of a perturbation treatment. When the refraction effects become 
large the validity of the small perturbation approximation comes into question. 
One could in principle carry out the approximation systematically to higher 
order but we shall not consider this here. 
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